Structural investigations into physiological DNA phosphorothioate modification

Wenxian Lan¹, Zhongpei Hu¹, Jie Shen^{1,2}, Chunxi Wang¹, Feng Jiang³, Huili Liu⁴,

Dewu Long³, Maili Liu⁴, Chunyang Cao¹*

Supplemental material and methods

PT modified DNA isolation and P-S bond stereochemistry characterization

The $R_{\rm P}$ - and $S_{\rm P}$ - PT modified single-stranded (ss) DNA were successfully isolated from their racemic mixtures by running a Proteomix SAX-NP5 strong anion-exchange column on a HPLC system. The two isolated fractions were collected and enriched so that they were enough to make NMR samples, and desalted by running ODS-C18 reverse phase column on a HPLC system. As reported in the previous literature [1], the R_p -PT ssDNA strand generally has a shorter retention time than S_p-PT DNA strand upon running SAX anion-exchange column. To characterize the stereochemistry of P-S bond in the isolated strands, the DNA hydrolysis was then performed with snake venom phosphodiesterase and alkaline phosphatase [1, 2]. The snake venom phosphodiesterase selectively digests the R_p but not S_p configuration [3]. Therefore, in our case, either the R_p -PT modified ssDNA 5'- $C_1G_2^{PS}G_3C_4C_5G_6C_7C_8G_9A_{10}$ -3' or its complementary R_p -PT modified ssDNA 5'- $T_{11}C_{12}G_{13}G_{14}C_{15}G_{16}^{PS}G_{17}C_{18}C_{19}G_{20}$ -3' (both with a shorter retention time than their S_p-PT strands in supplementary Figure S1) was digested into three peaks (G, C, A or T) while the S_p-PT modified ssDNA 5'-(supplementary Figure S2), both C1G2^{PS}G3C4C5G6C7C8G9A10-3' and its complementary Sp-PT modified ssDNA 5'-

 $T_{11}C_{12}G_{13}G_{14}C_{15}G_{16}^{PS}G_{17}C_{18}C_{19}G_{20}$ -3' were digested into four peaks (G, C, -G^{PS}G-, A or T) (supplemental Figure S2).

Supplemental figures and tables

Supplemental Table S1 The electron transfer potential of PT-free dsDNA, $[R_p, R_p]$ -PT dsDNA, $[S_p, S_p]$ -PT dsDNA and corresponding ssDNA. N.D. means 'not detectable'.

	E _{ev} (dsDNA)	E _{ev} (ssDNA)
R _p -PT	-0.62 V	-0.37 V
Sp-PT	-0.72 V	-0.43 V
PT-free	-0.28 V	N.D.

Supplemental Fig. S1 (A) The isolation of R_p -PT ssDNA (peak 1 in A, and further purification in B) and S_p -PT ssDNA (peak 2 in A, and further purification in C) by running Proteomix SAX-NP5 strong anion-exchange column two times on HPLC system, before desalting.

Supplemental Fig. S2 The characterization of the stereochemistry of PT bond in (A) R_{p} -PT ssDNA and (B) S_{p} -PT ssDNA strands firstly by DNA hydrolysis with snake venom phosphodiesterase and alkaline phosphatase, and then by running reverse phase columns on HPLC systems, respectively.

Supplemental references

- 1. Wang, L., et al., *Phosphorothioation of DNA in bacteria by dnd genes.* Nat Chem Biol, 2007. **3**(11): p. 709-10.
- 2. Pang, B., et al., *Lipid peroxidation dominates the chemistry of DNA adduct formation in a mouse model of inflammation.* Carcinogenesis, 2007. **28**(8): p. 1807-13.
- 3. Burgers, P.M. and F. Eckstein, *Diastereomers of 5'-O-adenosyl 3'-O-uridyl phosphorothioate: chemical synthesis and enzymatic properties.* Biochemistry, 1979. **18**(4): p. 592-6.